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S U M M A R Y
In the marine controlled-source electromagnetic method, the Earth response varies in fre-
quency; therefore, using a wide range of frequencies may better constrain geological structure
than using a single frequency or only a few closely spaced frequencies. Binary waveforms,
such as the square wave, provide a number of frequencies, though many are limited in useful-
ness because of the rapid decline of amplitude with frequency. Binary waveform design can be
improved by recognizing that the class of doubly symmetric waveforms has special properties:
they are compact, have controlled phase, are never polarizing and can be described by a simple
closed-form mathematical solution. Using this solution, we discovered a compact waveform
in which the amplitudes of the third and seventh harmonics are maximized and which has a
signal-to-noise advantage at higher frequencies over several other common waveforms.

Compact waveforms make possible improved methods for time-series processing. Using
short time windows and a first-difference pre-whitener lessens spectral contamination from
magnetotelluric signal and oceanographic noise; robust stacking reduces bias from time-series
noise transients; and accurate variance estimates may be derived from averages of waveform-
length Fourier transform windows of the time-series.

Key words: Time-series analysis; Fourier analysis; Marine electromagnetics.

1 I N T RO D U C T I O N

In the frequency domain marine controlled-source electromagnetic
(CSEM) method, an electromagnetic dipole is used to create a source
field that is measured at receivers placed across the seabed (Cox et
al. 1986; Constable & Cox 1996; MacGregor et al. 2001; Edwards
2005). This source dipole field couples with surrounding materials
and the measured field is treated as a linear convolution of the source
with an attenuative, diffusive earth (Ward & Hohmann 1987; Loseth
et al. 2006). The frequency response of the Earth transfer function
(TF) varies according to conductivity, source–receiver range and a
variety of other (chiefly geometric) factors, with the result that the
CSEM method is sensitive to thin resistive bodies embedded in con-
ductive sediments. This has led to its increasing use in hydrocarbon
and gas-hydrate exploration (e.g. Eidesmo et al. 2002; Ellingsrud
et al. 2002; Weitemeyer et al. 2006; Constable & Srnka 2007).

Because the peak frequency sensitivity of an exploration target is
not well known a priori, it is common to transmit a source waveform,
which allows for simultaneous broadcast of multiple frequencies.
The classic example of such a waveform is the square wave, which
provides a spread of frequencies at the odd harmonics of the fun-
damental transmission frequency. However, the square wave is not
ideal for the CSEM method because the amplitude of its harmonics
falls off as 1/n, where n is the harmonic number. For an inductive
method like CSEM in which fields attenuate exponentially as a func-

tion of range and frequency, many of the square wave’s harmonics
have too little power to be detected to useful ranges.

The signal-to-noise ratio (SNR) of the measured CSEM signal is
directly related to the source dipole moment (SDM) of the transmit-
ter. Since the SDM is composed of three factors, this suggests that
there are three modifications to a transmitter, which may increase
the SNR: increase the output current, lengthen the transmitter dipole
and modify the waveform. Existing transmitters output up to 1000
amps. Increasing this value is technically difficult, increases the
danger and complexity of ship-board operations and may eventu-
ally run into environmental concerns. Transmitter dipole lengths up
to 300 m are common, but because of the complexity of deep-towing
a streaming antenna near the seabed, longer dipoles are impractical.
In contrast, customizing the waveform is a relatively easy way to
increase the SDM at particular frequencies.

Specialized waveforms have been presented by Constable &
Cox (1996) and patented by ExxonMobil (Lu & Srnka 2005).
Mittet & Schaug-Pettersen (2008) present a collection of wave-
forms discovered using a Monte Carlo approach for finding wave-
forms that fit a given criterion. In this paper, we discuss classes
of waveforms, develop an analytical method for finding the opti-
mal second-order symmetric waveform for any given criterion and
compare the bandwidth of an example waveform so derived with
those mentioned above. We also discuss techniques for time-series
processing which take advantage of compact waveforms to reduce
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spectral contamination and provide accurate variance estimates. We
show examples from a recent academic CSEM survey over a gas
prospect on the northwestern Australian shelf.

2 WAV E F O R M C L A S S E S

CSEM waveforms are usually either binary (alternating polarity
between constant positive and negative output current) or ternary
(positive and negative separated by ‘off’ states). Ternary waveforms
are sometimes intentional (e.g. Constable & Cox 1996) and some-
times required due to hardware limitations (e.g. Sinha et al. 1990;
Mittet & Schaug-Pettersen 2008). Regardless of the reason, we note
that introducing time in a waveform in which the transmitter is off
decreases the integrated output current and therefore the cumula-
tive SNR. Thus we primarily consider binary waveforms in this
work. However, the mathematical development presented here ap-
plies equally well to ternary waveforms with one small addition,
which we note after the main development.

The family of binary waveforms may be divided into three classes
based on symmetry: asymmetric, singly symmetric and doubly sym-
metric. In a singly symmetric waveform, the second half of the
waveform is either the mirror image of the first half or the mirror
image with reversed polarity. (Note that to avoid confusion we refer
to these as ‘mirror’ and ‘rotational’ symmetry, respectively, and re-
strict the use of the classical terms ‘even’ and ‘odd’ to the discussion
of harmonic numbers.) In a doubly symmetric waveform, each half
of the waveform is itself composed of two symmetric halves. For
the waveform to be doubly symmetric, the quarter symmetry must
be opposite in sense to the half symmetry; that is, if the waveform
is rotationally symmetric about its centre, then the quarters must
have mirror symmetry. The square wave is an example of a dou-
bly symmetric waveform with rotational half symmetry and mirror
quarter symmetry. Fig. 1 shows examples of the three classes. Note
that doubly symmetric waveforms are constructed of an asymmetric
segment which is repeated four times with alternating symmetry:
rotational, mirror, rotational; or mirror, rotational, mirror. The slight
change in ordering corresponds to a 90◦ shift of the waveform as is
shown in plots (d) and (e) of Fig. 1.

To evaluate the usefulness of a particular class of waveforms
for CSEM and other frequency domain exploration techniques,
we examine the familiar Fourier series expansion given by eqs

(1) to (4).

f (t) = a0+
∞∑

n=1

an cos(2πnt/T )+
∞∑

n=1

bn sin(2πnt
/

T ), (1)

where

a0 = 1

T

∫ T/2

−T/2
f (t) dt, (2)

an = 2

T

∫ T/2

−T/2
f (t) cos(2πnt

/
T ) dt, (3)

bn = 2

T

∫ T/2

−T/2
f (t) sin(2πnt/T ) dt. (4)

Here f (t) is the time domain representation of a waveform, T is
the time length of one full wave, t is time and n is the harmonic
number. Eq. (1) is a statement of the Fourier theorem, namely that
any waveform can be decomposed into parts with mirror and rota-
tional symmetry about t = 0. Eq. (2) is the mean of the waveform
(i.e. its DC component). Eqs (3) and (4) are the frequency domain
amplitude coefficients of the nth harmonics and correspond, respec-
tively, to sinusoidal components with mirror symmetry about t = 0
and rotational symmetry about t = 0.

Eq. (2) is zero unless the waveform has a non-zero mean. In
practice, a non-zero mean has several undesirable side effects, which
should be avoided. First, it indicates a polarizing waveform which,
in a marine environment, accelerates the destruction of the current
carrying electrodes through ablation. Secondly, a non-zero mean
indicates that some of the total power of the waveform is in the DC
component. Since total power is finite and conserved, a non-zero DC
component indicates that the frequency domain components have
less overall power and thus lower SNR. Though one might surmise
that the non-zero mean produced by a polarizing waveform could
be useful as a proxy for DC measurements, it will be confounded
by various sources of self-potential across the receiver electrodes
and, therefore, likely useless.

In eqs (3) and (4), when f (t) has rotationally symmetric halves
an = 0, and when f (t) has mirror symmetric halves bn = 0, for all n.
If the waveform is doubly symmetric, the even values of n cancel,
leaving only odd harmonics (as is the case for the square wave).

(a) Asymmetric

(b) Singly Symmetric
      (Rotational)

(c) Singly Symmetric
      (Mirror)

(d) Doubly Symmetric

(e) Doubly Symmetric

Figure 1. Examples of the three classes of waveforms: (a) asymmetric, (b) singly symmetric with rotational symmetry, (c) singly symmetric with mirror
symmetry and (d) and (e) doubly symmetric. Note that waveform (e) is merely waveform (d) shifted 90◦. This is the waveform currently in use by our group.
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When f (t) is binary or ternary, the integrals in eqs (3) and (4) are
trivial to solve because f (t) has only the values −1, 1 or 0. Eq. (3)
becomes a sum of sine terms and eq. (4) a sum of cosine terms. The
coefficients an and bn interact through the oscillatory terms in eq.
(1) to determine the amplitude and phase of the frequency domain
harmonics of the waveform. Thus when either an or bn is zero, the
output phase will be 0, 90, 180 or 270 degrees.

For an asymmetric waveform, eqs (2)–(4) may all be non-zero,
yielding both even and odd harmonics of a variety of magnitudes
and phases and in some cases a polarizing non-zero mean. This
forms the largest class of waveforms and includes many subclasses
such as: pseudo-random binary sequences, which attempt to provide
a white signal spectrum; chirps, which sweep through a range of fre-
quencies; and sequential waveforms, in which multiple waveforms
of different fundamental frequencies are transmitted sequentially.
We experimented with sequential waveforms and found them to
produce overly complicated data with the inductive decay from one
fundamental frequency contaminating the time-series of the next
fundamental. Users of any waveform searching technique will want
to discard a large number of sequential and polarizing waveforms
in the search for a solution.

Singly symmetric waveforms have either non-zero an or non-zero
bn for all n, so the phase of each harmonic is a well-controlled multi-
ple of π /2. Even and odd harmonics may both exist, giving densely
spaced frequencies. However, some mirror symmetric waveforms
are polarizing.

Doubly symmetric waveforms also have either non-zero an or
bn for all n, but due to cancellation are limited to odd harmonics
only. They have the desirable quality that it is impossible for doubly
symmetric waveforms to be polarizing since they are constructed
from a short time segment that is repeated twice in each polarity.
Further, they have a discrete mathematical form which makes it
simple to search all possible waveforms to find the one which best
fits a given set of criteria.

3 F I N D I N G T H E O P T I M A L WAV E F O R M

To develop the mathematical form we need, we begin with the
simple, doubly symmetric waveform in Fig. 2. This waveform has
rotational symmetry in the centre, so all an are zero. The solution
of eq. (4) is given by

bn = 4

πn

[
1

2
cos

(
2πn

4

8

)
− cos

(
2πn

3

8

)
+ cos

(
2πn

1

8

)
−1

2

]
,

(5)

where we have not simplified the fractions introduced by t to em-
phasize that each term comes from a specific polarity transition in
the waveform. Because cos(−t) = cos(t) and the sign of the polarity
change at t is the same as at −t, cosine terms from the latter half of
the waveform reinforce those in the former half. Thus the equation
contains four terms: one for the end, one for the middle and one
for each transition inside the half waveform. This pattern holds true

1/2 3/8 1/4 1/8 0 1/8 1/4 3/8 1/2
Relative Time (t/T)

Figure 2. Simple, doubly symmetric waveform with rotational symmetry
in the centre and mirror symmetry at the quarters. Its Fourier coefficients
are given by eq. (5).

for any doubly symmetric waveform with rotationally symmetric
halves. The expansion for the waveform in Fig. 1(e), for example,
has six terms because there are four transitions in the half wave. The
expansion of the standard square wave has only the terms for the
end and the centre because there are no transitions in the half wave.
Note in eq. (5) that when n is even, the terms interfere destructively
in pairs, effectively eliminating all even harmonics. If there were
an odd number of transitions in the half wave, then a term would
be left unpaired and there would be even harmonics. However, in
a doubly symmetric waveform, the repetition of the quarter wave
ensures that there are always an even number of transitions and thus
only odd harmonics.

A pattern similar to eq. (5) can be derived from eq. (3) in dou-
bly symmetric waveforms with mirror symmetric halves. However,
since a mere shift of 90◦ changes these to rotationally symmetric
halves, we ignore this solution as trivially redundant.

We note that a ternary waveform has the same class of solutions
as a binary waveform. The difference is that the off state during each
polarity change splits every term in eq. (5) into two terms with half
amplitudes. So, for example, cos(2πn 3/8) becomes 1/2 cos(2πn
[3/8 − δ]) + 1/2 cos(2πn [3/8 + δ]), where δ is one half of the off
time. The split cosine terms interact destructively, decreasing the
amplitude at each frequency. When both n and δ are small, the dif-
ference between a ternary and binary waveform is small. However,
as either n or δ increases, the decrease in amplitude becomes quite
large and results in frequencies with very little usable range. Also,
as δ increases, the SNR of the entire waveform decreases because
the total output current is diminished. Thus, a binary waveform
transmitter is preferred to a ternary waveform transmitter.

The importance of the example given in eq. (5) is that doubly sym-
metric waveforms have a simple mathematical form. When search-
ing for new waveforms, there is no need to construct a time-series
for each possibility and Fourier transform it to get the amplitude
of the frequency components. Instead, the spectrum is determined
by the time of each transition in the waveform. This suggests that a
compact general form may be derived in which the number of co-
sine terms is a function of the number of transitions. However, we
first note that singly symmetric waveforms have the same solution
form as the example in eq. (5). Because single symmetry allows
polarized waveforms, we must take an additional step to exclude
them from our solution set. This is easily solved by recognizing that
in double symmetry the transition times in the second quarter of
the waveform are a function of the times in the first quarter. Thus
we have a general solution, which is parametrized in terms of the
number and times of the polarity transitions in the first quarter of
the waveform.

bn = 4

πn

⎡
⎣1

2
cos (πn) −1

2
+

τ∑
j=1

(−1) j

[
cos(2πnt j )

− cos

(
2πn

{
T

2
+ t j

})]]
,

(6)

where T is the total length of the waveform in time, τ is the number
of transitions in the first quarter, and tj is the time of each transition
in that quarter expressed as a function of T .

While transitions can theoretically be placed infinitely close to
one another, in reality, digitally controlled hardware involved in both
the transmitter and receiver imposes limitations on switching and
sampling rates. Most importantly, the waveform transitions are dis-
cretized by the switching frequency of the transmitter. Our present
transmitter, for example, runs at 400 Hz, so any waveform it pro-
duces must have polarity transitions which are an integer multiple
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Table 1. The harmonic amplitudes and phases of the doubly symmetric waveform shown in Fig. 1(d) and compared with other commonly used
waveforms in Figs 3 and 4. Only harmonics with an amplitude >0.10 are shown.

Harmonic number Amplitude Phase Harmonic number Amplitude Phase

1 0.35 0 13 0.40 0
3 0.88 0 17 0.16 180
5 0.25 0 23 0.12 0
7 0.74 180 27 0.19 180
9 0.24 0 33 0.16 0
11 0.20 180 47 0.11 180

of 2.5 ms apart. Further, to be robustly sampled, a waveform must
have transitions that are far enough apart in time (the ‘minimum
time’) that they meet certain criteria. First, the minimum time must
be long enough to allow the transmitter to reach full output power
after switching. This time is highly dependent on the electronic
components of the transmitter and the inductance of the antenna
and must be experimentally determined. Secondly, according to the
sampling theorem, the minimum time must be long enough to allow
the receiver to sample a transition.

With these limitations, the number of possible waveforms de-
creases from infinity to a reasonable number. For example, for a
1 s waveform, a transmitter able to switch at 400 Hz, a receiver
sampling at 50 Hz and requiring a minimum of two receiver sam-
ples of minimum time, there are 60331 possible doubly symmetric
waveforms. A simple MATLAB program using eq. (6) to inspect
every possible waveform for one that matches a given criterion (e.g.
the highest amplitude of the sum of the third & seventh harmonics)
takes about 12 s on an ordinary laptop.

There are cases where there are too many possible waveforms to
make searching the entire set practical. (e.g. for an 8 s waveform
with the same criteria as above, there are well over 1017 doubly
symmetric waveforms!) In this situation, it is advisable to combine
our analytic formulation with a stochastic search method such as
Monte Carlo to find a suitable waveform in a reasonable amount of
time. While such a method cannot be said to find the one optimal
waveform fitting the criterion, it may certainly find one suitable for
exploration purposes.

4 T H E WAV E F O R M I N P R A C T I C E

Since in the CSEM method higher frequencies attenuate more
rapidly and are limited to sensing shallower structure, choice of
frequency is important. Model studies of 1-D synthetic data show
that having two widely spaced frequencies improves the resolution
of inversion results (Key 2009). Key also shows that for synthetic
modelling, there is no benefit to having a dense collection of fre-
quencies because the Earth TF varies smoothly in frequency. We
note, however, that while a forward model of a target survey area
may identify a preferred frequency, unexpected geological condi-
tions may interfere and shift the peak response. There may also be
enough uncertainty regarding the Earth structure to be explored that
an optimal frequency cannot be determined a priori. Additionally,
noise encountered in the marine environment is commonly band
limited and may adversely affect one or more target frequencies.
It is often difficult to predict the frequency of such noise ahead of
time, so having a broad spectrum of frequencies is desirable to mit-
igate these effects. While using a square wave provides one decade
of frequencies with harmonic amplitudes above 10 per cent of the
peak current, most of the signal is concentrated in the fundamental
with the next frequency available (the third harmonic) at only 42
per cent amplitude.

We used the process described in the preceding section to search
for a waveform with maximum amplitude in the third and seventh
harmonics. Setting the target frequency as the third harmonic rather
than the fundamental allows for the lowest frequency to establish
background structure or to provide a safeguard if the estimated
optimal frequency is too high. Also, increasing power in the seventh
harmonic ensures higher amplitude across at least one half decade
of frequency.

We discovered the waveform shown in Fig. 1(d) (hereinafter
referred to as ‘D’) and whose output amplitudes are listed in
Table 1. In Fig. 3(a), we compare waveform D to a square wave. The
amplitude of the fundamental is 0.35, which is low. However, the
power has been spread to higher frequencies so that the 1/n fall-off
observed in the higher harmonics of the square wave is mimicked
but at higher amplitude. The highest harmonic above 10 per cent
amplitude is the 47th harmonic and the total spread of frequencies
above 10 per cent covers nearly two decades.

Fig. 3(b) compares waveform D with the doubly symmetric
ternary waveform presented by Constable & Cox (1996) (here-
inafter referred to as ‘Cox’). The Cox waveform has amplitude
concentrated in the first and third harmonics with each at about
78 per cent. Most other harmonics are low, with total coverage
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Figure 3. Comparison of the amplitudes of the waveform D (filled cir-
cles) with several other waveforms in use (crosses). Frequencies whose
amplitudes are below 0.1 of peak current have been excluded. Comparison
waveforms are from (a) a square wave, (b) the Cox waveform, (c) the LS
waveform and (d) the MSP waveform. The x-axis is log10 frequency. The
fundamental for each waveform is set to 1 Hz and the peak output current to
1.0. All harmonics are odd integers with the exception of the LS waveform,
which is asymmetric and thus has some even harmonics.
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Figure 4. Plot of amplitude threshold versus frequency coverage for the waveforms compared in Fig. 3. For a given output amplitude threshold, the plot shows
the number of decades of frequency between the fundamental and the highest harmonic above the threshold. The D and MSP waveforms have similarly broad
frequency coverage, though waveform D has an advantage in the first decade. Total coverage is ∼1.7 decades at an amplitude threshold of 0.1 (i.e. 10 per cent
output amplitude).

above 10 per cent just passing a decade in frequency. We note that
for this ternary waveform the output current is off for 31 per cent
of the time, significantly reducing the SNR of all frequencies when
compared with a binary waveform with the same peak-to-peak out-
put current.

ExxonMobil have patented several waveforms with equal power
in a series of pseudo-logarithmically spaced frequencies covering
one decade (Lu & Srnka 2005). These are asymmetric, polariz-
ing waveforms. However, for comparison we show in Fig. 3(c) the
waveform with the broadest frequency range for which timing is
provided in the patent filing (hereinafter referred to as ‘LS’). The
LS waveform was designed to mimic a pseudo-random binary se-
quence in which the output amplitude is approximately 60 per cent
for the first, second, fourth and eighth harmonics. Because it is an
asymmetric waveform, it has both even and odd harmonics and the
total output power, which is conserved, is divided among more har-
monics than a symmetric waveform. Many harmonics have close to
zero amplitude and those above the eighth harmonic fall off rapidly.
Nevertheless, the total frequency coverage above 10 per cent is
almost 1.5 decades.

Mittet & Schaug-Pettersen (2008) presented three waveforms
of which we compare the one with the broadest frequency range
(hereinafter referred to as ‘MSP’) in Fig. 3(d). Since timings are not
provided in their paper, we have approximated the waveform from
their Fig. 4. The amplitudes of the first, fifth and ninth harmonics
are almost 60 per cent while the third harmonic is about 70 per cent.
Higher harmonics fall off at a rate similar to waveform D.

Fig. 4 is a comparison of the frequency coverage of the five wave-
forms discussed above. For each waveform, we plot the frequency
coverage between the fundamental and the highest harmonic above
a given output amplitude threshold, where the frequency coverage
is defined as the difference of the log10 harmonic frequency and
fundamental frequency. For example, for the Cox waveform, there
is a little less than half a decade of frequency coverage provided

by harmonics above a 0.3 amplitude threshold. Note that we use
the fundamental as the low end of the frequency band regardless
of its amplitude because it has a large skin depth compared to the
harmonics and therefore the longest range detection, even when its
amplitude is suppressed. Through the whole range of cut-off thresh-
olds, waveforms D and MSP perform similarly. However, waveform
D has a slight SNR advantage in the first decade.

In the waveforms shown in Figs 3 and 4, some effort has
been made by the various authors to retain output power in the
fundamental frequency; whereas we placed no constraint on the
fundamental, sacrificing its amplitude for enhanced higher har-
monics. We believe that this approach is beneficial for three
reasons. First, lower frequencies have lower attenuation, thus
propagating farther than higher frequencies even at reduced
transmission amplitudes, so higher amplitude is not necessary.
Secondly, one may want to scale the waveform so that the
peak amplitude harmonic is the frequency that is most sensi-
tive to the target structure, and yet still be able to bracket it
with frequencies on both the high and low sides. Having at least
one lower frequency provides either data to help resolve back-
ground structure or insurance in case the target frequency turns
out to have been set too high. Finally, because output power is con-
served, decreased amplitude in the fundamental is associated with
elevated amplitudes in higher harmonics. Waveforms like those
shown in Fig. 3, in which the amplitude of the fundamental is kept
high, may be decreasing the effective range of the higher frequen-
cies.

We have now used waveform D in three large surveys: in 2008
in the Gulf of Mexico to study hydrates (Weitemeyer & Constable
2010), in 2009 off the coast of Australia to study the Scarborough
hydrocarbon reservoir (Myer et al. 2010) and in 2010 off the coast
of Nicaragua to study a subduction zone. We have usually selected
a fundamental of 0.25 Hz. Fig. 5 is a plot of amplitude versus range
from the Scarborough survey off the northwest shelf of Australia.
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Figure 5. Inline horizontal electric field amplitude versus range data from a recent CSEM survey over the Scarborough hydrocarbon reservoir using waveform
D. Arrows indicate the range at which each frequency’s data reach SNR = 1. The augmented amplitude of the third harmonic (0.75 Hz) has raised its SNR
sufficiently that it is detected to ranges that are within 1–2 km of the fundamental. Though the lower amplitude of the fundamental has limited its detection
range, this does not adversely impact its usefulness in multifrequency inversion.

The survey is in 1 km of water with several kilometres of conductive
sediments overlaying a resistive basement (a common hydrocarbon
target scenario). From the amplitudes of the frequency components
shown in Fig. 3(a), one might expect that the third harmonic, which
has an amplitude of 0.88, should be detectable above the noise floor
to farther ranges than the fundamental, whose amplitude is only
0.35. However, the data shown in Fig. 5 indicate that this is not the
case. This is due to the complicated manner in which the SNR is
affected by amplitude and frequency.

The maximum detection range for the electric field, which we
define as the range at which the SNR declines to less than 1, is
a function of the field’s exponential decay rate. The decay rate is
frequency dependent, such that higher frequencies approach the
noise floor at a much steeper angle with increasing range than
lower frequencies. Thus, even though changes in the amplitude of
a source field frequency component affect its SNR linearly, the
effect on maximum detection range is non-linear. As depicted in
Fig. 5, raising the amplitude of the third harmonic raised its SNR
sufficiently that it is detected to ranges that are within 1–2 km
of the fundamental. Conversely, lowering the amplitude of the
fundamental lowered its SNR and limited its detection range,
though not adversely impacting its usefulness in multifrequency
inversion. Evidently, waveform D has achieved a good balance
between these two frequencies in a common hydrocarbon target
scenario. We note, however, that the rate of electric field decay is
also related to conductivity structure, and in a more resistive en-
vironment (e.g. sub-basalt hydrocarbon targets, mid-ocean ridges,
etc.) the higher harmonics will also decay slowly. Explorers in these
environments may find benefit in designing a new waveform, which
augments harmonics that are over a decade above the fundamen-
tal. The mathematical process described in the previous section can
easily accommodate this.

5 T I M E - S E R I E S P RO C E S S I N G

Compact waveforms such as those discussed earlier lend themselves
to particular statistical methods in processing. In the frequency
domain CSEM method, the data of interest are not the time-series,
but the TF estimates derived in the frequency domain. Workers
in the CSEM method have not generally used the term ‘transfer
function’ because they have focused on the change in amplitude and
phase at one particular frequency over range. However, the CSEM
response function also varies in frequency. With the growing use
of multifrequency inversion, we prefer the term TF. In a typical
TF estimate, the cross-spectrum of the input with the output signal
is divided by the auto-spectrum of the input signal to derive the
Earth system TF (Bendat & Piersol 2000, Ch. 6). Since the CSEM
input signal is known, auto- and cross-spectral techniques are not
necessary. Instead, the Fourier transform of the receiver time-series
is simply divided by the complex Fourier components of the input
signal (i.e. the output current measured at the transmitter). The result
is then normalized by the source dipole length and corrected for
the response function of the receiver. Because the whole process is
linear, a number of statistical techniques may be applied to decrease
spectral leakage, decrease the noise floor and derive a variance
estimate for each complex TF.

In general, TF estimates are not necessary for very short time
windows since the CSEM response varies smoothly in time. Typical
transmitter tow velocities are on the order of 0.5–1.0 m s–1 (1–2
knots), so 1 min of time-series represents less than a typical antenna
length. Though the movement of the transmitter means that the
data are not statistically stationary, they are assumed to be so and
it is common practice to apply a FFT to time-series windows that
are one or more minutes long and ignore any bias which may be
introduced (e.g. Behrens 2005). In Fig. 6, we quantify this bias using
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Figure 6. Percent bias in amplitude (a) and degrees bias in phase (b) due to non-stationarity of the CSEM source calculated for a 2-min stack length using a
1-D model described in the text. The amplitude bias decreases with range and increases with frequency as expected. The phase bias unexpectedly plateaus to a
constant value for each frequency, indicating the complex nature in which the phase velocity is affected by the ocean–seafloor interface. Plots (c) and (d) are
for a 3-min stack length and illustrate the increase in bias as stack length is increased.

a simple three-layer model and the 1-D CSEM modelling code of
Key (2009), which we have modified to support a finite dipole source
rather than a point dipole. The model is composed of a 1 km thick,
0.3 �m sea water layer between half-spaces of air (1012 �m) and
sediment (1 �m). The transmitter is 50 m above the seafloor and is
given a dipole length of 250 m. We calculate the inline response at
receiver positions spaced at every metre between 500 and 2500 m
for 31 frequencies between 0.1 and 10 Hz. Assuming a transmitter
velocity of 1 m s–1, these data points are also spaced every second
in time. We used window lengths of 1–3 min and calculated the
percentage bias by comparing the mean response of the complex
field data within the time window to the response at the centre point
of the window. Bias is a measure of the curvature in the data being
stacked and is therefore primarily a function of the change in the
field gradient.

The contours in Figs 6(a) and (b) are the percentage bias in
amplitude and the bias in phase in degrees, respectively, for a 2-min
stack length; (c) and (d) are for a 3-min stack length. The bias for the
1-min stack is insignificant (<1 per cent) for range >700 m and is
not plotted. The bias increases with increasing stack window length,
as expected. The rapid decline in amplitude bias with range reflects
the exponential decay of the electric field and shows that even for the
3-min window length, the assumption of stationarity is reasonable
after about 1500 m range. However, the bias in phase behaves quite

differently than the bias in amplitude, levelling out to a minimum
bias per frequency. The sharp turn in the phase bias contours is a
strong function of the seafloor resistivity and the levelling of the
bias contours is due to the phase velocity in the seafloor being
modulated by energy leaking up from the seafloor into the water
column. At much farther ranges, where the electric field from the
air dominates, the phase velocity will become relatively constant
and the phase stacking bias will reduce to zero.

Another problem with using a long time window is contamina-
tion by magnetotelluric (MT) signal. The MT signal is a broad-
bandwidth EM signal sourced in the ionosphere and impinging
everywhere on the Earth. It has a red spectrum and while in a ma-
rine environment the higher frequencies can be attenuated by the
overlying ocean, frequencies below 0.1 Hz are typically measur-
able. A 1-min FFT window in CSEM is subject to spectral leakage
by MT signal, which contaminates the TF estimate (McFadden &
Constable 1983). Additional similar sources of spectral leakage
such as self-potential, electronic drift and motional inductance may
also be present and minimized by the process described below.

First difference pre-whitening is a simple method to reduce spec-
tral contamination that can take advantage of the compact wave-
form. Without a pre-whitener, the TF estimate for a long time win-
dow (e.g. 60 s) is identical to the average of TF estimates for short
time windows covering the same time (e.g. fifteen 4 s windows)
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when the signal is periodic, so there is no advantage to using a
shorter time window. However, with pre-whitening, which is not a
linear operation, this no longer holds true. In terms of a red spec-
tral contamination source like MT, first-difference pre-whitening is
roughly analogous to a high-pass filter whose corner frequency is
a function of the window length. The shorter the time window, the
higher the corner. The reason for this is simple. For a given window
length T , frequencies below about one-quarter or one-fifth of the
lowest frequency that can be derived from the window (i.e. 1/T) will
appear in the time-series as a linear ramp and can be effectively re-
moved by first difference pre-whitening. Shrinking the time window
to the length of one source waveform maximizes the effect of the
pre-whitener by moving the cut-off frequency close to the funda-
mental frequency of the source waveform. Thus if one desires long
time window TF estimates (e.g. 60 s), it is better to use the shortest
time window possible (i.e. one fundamental wavelength long) and
average in the frequency domain. When pre-whitening is used, this
will yield an improved TF estimate compared to a single, long time
window TF estimate.

Eqs (7) and (8) are the first-difference pre-whitening and post-
darkening equations, respectively, where lowercase variables x and
y are samples in the time domain, uppercase variables X and Y are
in the frequency domain, and F is the sampling frequency of the
receiver (Shumway & Stoffer 2000, Ch 3).

y j = x j+1 − x j , (7)

X ( f ) = Y ( f )

e2π i f /F − 1
. (8)

The pre-whitener is applied in the time domain, the data are
Fourier transformed into the frequency domain, then the post-
darkener is applied to remove the amplitude and frequency ef-
fects of the filter. First differencing is not as aggressive as some
pre-whiteners such as auto-regressive filters; however, it has the
advantage that the post-darkening step is analytical and complete;
no residual amplitude or phase distortions remain on the data after
post-darkening.

In the Scarborough survey data shown in Fig. 5, we used wave-
form D with a fundamental frequency of 0.25 Hz. To derive the
CSEM data at each receiver, we used an FFT with a 4 s window
(i.e. one waveform in length). Each time-series window was pre-

whitened by first differencing to remove the effects of long-period
MT noise. After transformation into the frequency domain, the data
were post-darkened to remove the phase and amplitude effects of
the pre-whitener. The TF estimates from the 4 s windows were then
averaged to yield TF estimates for 60 s windows. With first dif-
ferencing, we observe a factor of two reduction in the noise floor
compared to without differencing. Since we are using a short time
window, polynomial noise reduction such as described by Pankratov
& Geraskin (2010) is not necessary. Indeed, in a short time win-
dow, polynomial noise reduction could have the undesirable effect
of partially removing the CSEM signal.

Another practical benefit of the use of the average of short time
windows is that it allows derivation of a variance estimate for each
stacked TF datum. For each set of data to be averaged, we calculate
the variance of the mean using the complex amplitudes. To do this,
we use the Bienaymé formula that states that the variance of the
mean is the mean of the variances, where the variance of each datum
is assumed to be equal (Loeve 1978). When calculating this value,
it is important to consider the decay in amplitude with increasing
range. As with the case of stacking bias discussed earlier, the linear
component of this decay does not bias the use of averages—the
average of the amplitudes and the average of the ranges define a point
that lies on a linear trend of amplitude with range, and inclusion of
the linear part of the decay in our estimation of variance will result
in an overestimate. Rather, we remove a linear trend from the data
and estimate the variance of the residuals, dividing by the number
of data to get the variance in the mean.

Fig. 7 shows 60 s TF amplitude estimates for 0.75 Hz derived
in this way. The variance estimates (plotted as standard deviation)
are shown by the thin line below the TF data. At close ranges the
variance is inflated by the accentuated curvature of the exponentially
decaying signal. This is the bias discussed above and modelled in
Fig. 6. Because it is relatively small (0.1 per cent of signal amplitude
or less), we make no attempt to remove it from the TF estimate. After
a kilometre in range, the variance estimate settles to a constant value.
Since the data also settle to this value at longer ranges, we take it to
be the system noise floor and validation that our variance estimation
procedure is correct.

Both the long time window and the average of short time win-
dows are subject to bias from noise contamination of the time-series
as discussed earlier. Brief excursions of the variance from the noise
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Figure 7. 60 s 0.75 Hz electric-field transfer function amplitude estimates (filled circles) and variance estimates (line; plotted as standard deviation) from a
site in the Scarborough survey. TF estimates are each the mean of fifteen 4 s estimates. Variance estimates are calculated using the procedure described in the
text. At close range, the variance estimate is high due to bias from the curvature of the exponential decay. After about 1 km range, the variance settles to the
noise floor, as verified by the long range TF data. The outlier identified in the plot is discussed in the text and shown in Fig. 8.
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Figure 8. (a) 60 s of time-series from around the outlier shown in Fig. 7 near 4 km range. The spike in the time-series between 28 and 36 s is from the activation
of an acoustic transponder. (b) The 4 s TF amplitude estimates for 0.75 Hz derived from the time-series. Note the outlier values caused by the time-series spike.
The arithmetic mean of these data (circle) is ∼40 per cent higher than the median (square), which is more robust.

floor in Fig. 7 indicate points which are biased by noise transients
in the time-series. An advantage of using the short time window
is that the averaging can be replaced with any of a variety of ro-
bust stacking techniques. Transient defects in the time-series can
be common in CSEM data and usually are of very short duration—
less than one waveform in length. TF estimates for time windows
containing these defects may be abnormally high and consequently
can bias the statistical average, which is notoriously sensitive to
outliers. In Fig. 8 we show 60 s of time-series from the Scar-
borough survey with a short duration defect caused by activation
of the receiver’s acoustic transponder. Below the time-series are
the TF estimates for 0.75 Hz showing the outlier points caused
by the electric field spike. The circle shows the average of the
estimates and the square shows the median, which is less sensi-
tive to outliers. The expected value should lie near and above the
4 s data, which are slightly concave upwards because of expo-
nential decay of the electric field. As expected, the median pro-
vides a better TF estimate than the mean, which in this example
is biased ∼40 per cent. For noisier data, more complicated methods
than the median may be used to identify outliers and exclude them
from the stacking and variance calculations, thus also improving
the variance estimation procedure.

It is important to note that the estimate from a long time window
is identically sensitive to outliers, since the estimate from a long
time window is identical to the average of estimates of short time
windows. Had we used 60 s of time-series to produce the TF esti-
mate, we would have derived a biased estimate, which would have
to be discarded. In our procedure, in which we take advantage of the
compactness of the waveform to derive short-time TF estimates, the
effect of outliers can be reduced or eliminated from the long-time
TF estimates, thus increasing the amount and quality of available
data.

6 C O N C LU S I O N S

Binary and ternary waveform design can be improved by recog-
nizing that the class of doubly symmetric waveforms has special
properties: they are compact, have controlled phase, are never po-
larizing, and can be described by a close-form solution which
makes searching the entire class tractable on a standard com-
puter. We have searched the class for a waveform in which
two of the middle harmonics (third and seventh) are maximized
and shown with data from a survey off the coast of Australia that
the resulting waveform is a reasonable choice for collecting multi-
frequency data in hydrocarbon-related CSEM surveys.

The use of compact waveforms allows for more robust sta-
tistical methods to be introduced into CSEM time-series pro-
cessing. Using short, waveform-length, time windows and a
simple first-difference pre-whitener lessens spectral contamina-
tion from MT or other low frequency noise. The detailed
data may then be robustly stacked to the more typical 60+ s time
windows, while reducing bias from time-series transients. Variance
estimates may also be derived to accurately characterize the instru-
ment noise floor and, at close ranges, the curvature bias from the
rapid exponential decay.

A C K N OW L E D G M E N T S

The authors acknowledge funding support from BHP Billiton and
the Seafloor Electromagnetic Methods Consortium at the Scripps
Institution of Oceanography. We thank David Jabson for helpful
discussion, and Rune Mittet and an anonymous reviewer for many
useful suggestions. We thank Phillip K. Dick for inspiring the name
of our waveform.

C© 2010 The Authors, GJI, 184, 689–698

Geophysical Journal International C© 2010 RAS



698 D. Myer, S. Constable and K. Key

R E F E R E N C E S

Behrens, J.P., 2005. The detection of electrical anisotropy in 35 Ma pacific
lithosphere, PhD thesis, University of California.

Bendat, J.S. & Piersol, A.G., 2000. Random Data: Analysis and Measure-
ment Procedures, 3rd edn, Wiley, New York.

Constable, S. & Cox, C.S., 1996. Marine controlled-source electromag-
netic sounding. Part 2: the PEGASUS experiment, J. geophys. Res., 101,
5519–5530, doi:10.1029/95JB03738

Constable, S. & Srnka, L.J., 2007. An introduction to marine controlled-
source electromagnetic methods for hydrocarbon exploration, Geo-
physics, 72, WA3–WA12, doi:10.1190/1.2432483

Cox, C.S., Constable, S.C., Chave, A.D. & Webb, S.C., 1986. Controlled-
source ElectroMagnetic sounding of the oceanic lithosphere, Nature, 320,
52–54, doi:10.1038/320052a0

Edwards, N., 2005. Marine controlled source electromagnetics: princi-
ples, methodologies, future commercial applications, Surv. Geophys., 26,
675–700. doi:10.1007/s10712-005-1830-3

Eidesmo, T., Ellingsrud, S., MacGregor, L.M., Constable, S., Sinha, M.C.,
Johansen, S., Kong, F.N. & Westerdahl, H., 2002. Sea Bed Logging (SBL),
a new method for remote and direct identification of hydrocarbon filled
layers in deepwater areas, First Break, 20, 144–152.

Ellingsrud, S., Eidesmo, T., Johansen, S., Sinha, M.C., MacGregor, L.M.
& Constable, S., 2002. Remote sensing of hydrocarbon layers by seabed
logging (SBL): results from a cruise offshore Angola, Leading Edge, 21,
972–982, doi:10.1190/1.1518433

Key, K., 2009. 1D inversion of multicomponent, multifrequency marine
CSEM data: methodology and synthetic studies for resolving thin resistive
layers, Geophysics, 74, F9–F20, doi:10.1190/1.3058434

Loeve, M., 1978. Probability Theory, 4th edn, Vol. 45, Springer-Verlag, New
York.

Loseth, L.O., Pedersen, H.M., Ursin, B., Amundsen, L. & Ellingsrud, S.,

2006. Low-frequency electromagnetic fields in applied geophysics: waves
or diffusion? Geophysics, 71, W29–W40, doi:10.1190/1.2208275

Lu, X. & Srnka, L.J., 2005. Logarithmic spectrum transmitter wave-
form for controlled-source electromagnetic surveying: U. S. Patent WO
2005/117326A2.

MacGregor, L., Sinha, M. & Constable, S., 2001. Electrical resistivity
structure of the Valu Fa Ridge, Lau Basin, from marine controlled-
source electromagnetic sounding, Geophys. J. Int., 146, 217–236,
doi:10.1046/j.1365-246X.2001.00440.x

McFadden, P.L. & Constable, S.C., 1983. The estimation and removal of a
linear drift from stacked data, J. Geophys.-Z. Geophysik, 53, 52–58.

Mittet, R. & Schaug-Pettersen, T., 2008. Shaping optimal transmitter
waveforms for marine CSEM surveys, Geophysics, 73, F97–F104,
doi:10.1190/1.2898410

Myer, D., Constable, S. & Key, K., 2010. A marine EM survey of the
Scarborough gas field, Northwest Shelf of Australia, First Break, 28,
77–82.

Pankratov, O.V. & Geraskin, A.I., 2010. On processing of controlled source
electromagnetic (CSEM) data, Geologica Acta, 8, 31–49.

Shumway, R.H. & Stoffer, D.S., 2000. Time Series Analysis and its Appli-
cations, 1st edn, Springer-Verlag, New York, doi:10.1007/978-1-4419-
7865-3

Sinha, M.C., Patel, P.D., Unsworth, M.J., Owen, T.R.E. & Maccormack,
M.R.G., 1990. An active source electromagnetic sounding system for
marine use, Mar. Geophys. Res., 12, 59–68, doi:10.1007/BF00310563

Ward, S.H. & Hohmann, G.W., 1987. Electromagnetic theory for geophysi-
cal applications, in Electromagnetic Methods in Applied Geophysics, Vol.
1, ed. Nabighian, M.N., Soc. Exploration Geophysicists, Tulsa, OK.

Weitemeyer, K. & Constable, S., 2010. Mapping shallow geology and gas
hydrate with marine CSEM surveys, First Break, 28, 97–102.

Weitemeyer, K.A., Constable, S.C., Key, K.W. & Behrens, J.P., 2006.
First results from a marine controlled-source electromagnetic sur-
vey to detect gas hydrates offshore Oregon, Geophys. Res. Lett., 33,
doi:10.1029/2005gl024896

C© 2010 The Authors, GJI, 184, 689–698

Geophysical Journal International C© 2010 RAS


